Climatological Features of the Weakly and Very Stably Stratified Nocturnal Boundary Layers. Part III: The Structure of Meteorological State Variables in Persistent Regime Nights and across Regime Transitions

Author:

Abraham Carsten1ORCID,Monahan Adam H.1

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract The evolution of profiles of meteorological state variables during nights with and without transitions in the nocturnal stably stratified boundary layer (SBL) between weakly stable (wSBL) and very stable (vSBL) regimes, as classified by a hidden Markov model, is examined at nine different tower sites. During wSBL-to-vSBL transitions, inversion strengths increase, near-surface winds decelerate, and atmospheric layers vertically decouple. Turbulence kinetic energy (TKE) steadily decreases before wSBL-to-vSBL transitions and fluctuations of the vertical velocity become weak. In contrast to land-based sites where wSBL-to-vSBL transitions are normally caused by surface cooling, at sea-based stations the transitions generally are initiated by advection of warm air aloft. The vSBL-to-wSBL transition is characterized by a fast breakdown of the inversion strength, acceleration of wind profiles, and a restored vertical coupling of the atmospheric flow. TKE recovers on time scales of minutes first in atmospheric levels between 50 and 100 m. Profiles of state variables for the two different regimes during very persistent nights (nights without SBL regime transitions) are clearly separated and similar to structures during nights with transitions away from transition times. During very persistent nights the wind conditions stay relatively steady. Similarly, the temperature is steady after an initial adjustment time at sunset (wSBL) or shortly after sunset (vSBL). Even though nights with and without transitions are a common feature of the SBL, there is no clear indicator in Reynolds-averaged mean variables that distinguishes very persistent nights from nights with transitions.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3