Effects of Rotation on the Multiscale Organization of Convection in a Global 2D Cloud-Resolving Model

Author:

Yang Qiu1,Majda Andrew J.2,Brenowitz Noah D.3

Affiliation:

1. Center for Prototype Climate Modeling, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates

2. Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York, and Center for Prototype Climate Modeling, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates

3. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract Atmospheric convection exhibits distinct spatiotemporal variability at different latitudes. A good understanding of the effects of rotation on the multiscale organization of convection from the mesoscale to synoptic scale to planetary scale is still lacking. Here cloud-resolving simulations with fixed surface fluxes and radiative cooling are implemented with constant rotation in a two-dimensional (2D) planetary domain to simulate multiscale organization of convection from the tropics to midlatitudes. All scenarios are divided into three rotation regimes (weak, order-one, and strong) to represent the idealized ITCZ region (0°–6°N), the Indian monsoon region (6°–20°N), and the midlatitude region (20°–45°N), respectively. In each rotation regime, a multiscale asymptotic model is derived systematically and used as a diagnostic framework for energy budget analysis. The results show that planetary-scale organization of convection only arises in the weak rotation regime, while synoptic-scale organization dominates (vanishes) in the order-one (strong) rotation regime. The depletion of planetary-scale organization of convection as the magnitude of rotation increases is attributed to the reduced planetary kinetic energy of zonal winds, mainly due to the decreasing acceleration effect by eddy zonal momentum transfer from mesoscale convective systems (MCSs) and the increasing deceleration effect by the Coriolis force. Similarly, the maintenance of synoptic-scale organization is related to the acceleration effect by MCSs. Such decreasing acceleration effects by MCSs on both planetary and synoptic scales are further attributed to less favorable conditions for convection provided by weaker background vertical shear of the zonal winds, resulting from the increasing magnitude of rotation.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3