Mountain Waves Produced by a Stratified Boundary Layer Flow. Part I: Hydrostatic Case

Author:

Lott François1,Deremble Bruno1,Soufflet Clément1

Affiliation:

1. Laboratoire de Météorologie Dynamique, PSL Research Institute, Ecole Normale Supérieure, Paris, France

Abstract

AbstractA hydrostatic theory for mountain waves with a boundary layer of constant eddy viscosity is presented. It predicts that dissipation impacts the dynamics over an inner layer whose depth is controlled by the inner-layer scale δ of viscous critical-level theory. The theory applies when the mountain height is smaller or near δ and is validated with a fully nonlinear model. In this case the pressure drag and the wave Reynolds stress can be predicted by inviscid theory, if one takes for the incident wind its value around the inner-layer scale. In contrast with the inviscid theory and for small mountains the wave drag is compensated by an acceleration of the flow in the inner layer rather than of the solid earth. Still for small mountains and when stability increases, the emitted waves have smaller vertical scale and are more dissipated when traveling through the inner layer: a fraction of the wave drag is deposited around the top of the inner layer before reaching the outer regions. When the mountain height becomes comparable to the inner-layer scale, nonseparated upstream blocking and downslope winds develop. Theory and the model show that (i) the downslope winds penetrate well into the inner layer and (ii) upstream blocking and downslope winds are favored when the static stability is strong and (iii) are not associated with upper-level wave breaking.

Funder

Comissariat à l'Energie Atomique

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3