Mountain Waves Produced by a Stratified Shear Flow with a Boundary Layer. Part II: Form Drag, Wave Drag, and Transition from Downstream Sheltering to Upstream Blocking

Author:

Lott François1,Deremble Bruno1,Soufflet Clément1

Affiliation:

1. a Laboratoire de Météorologie Dynamique, PSL Research Institute, Ecole Normale Supérieure, Paris, France

Abstract

AbstractThe nonhydrostatic version of the mountain flow theory presented in Part I is detailed. In the near-neutral case, the surface pressure decreases when the flow crosses the mountain to balance an increase in surface friction along the ground. This produces a form drag that can be predicted qualitatively. When stratification increases, internal waves start to control the dynamics and the drag is due to upward-propagating mountain waves as in Part I. The reflected waves nevertheless add complexity to the transition. First, when stability increases, upward-propagating waves and reflected waves interact destructively and low-drag states occur. When stability increases further, the interaction becomes constructive and high-drag states are reached. In very stable cases, the reflected waves do not affect the drag much. Although the drag gives a reasonable estimate of the Reynolds stress, its sign and vertical profile are profoundly affected by stability. In the near-neutral case, the Reynolds stress in the flow is positive, with a maximum around the top of the inner layer, decelerating the large-scale flow in the inner layer and accelerating it above. In the more stable cases, on the contrary, the large-scale flow above the inner layer is decelerated as expected for dissipated mountain waves. The structure of the flow around the mountain is also strongly affected by stability: it is characterized by nonseparated sheltering in the near-neutral cases, by upstream blocking in the very stable case, and at intermediate stability by the presence of a strong but isolated wave crest immediately downstream of the ridge.

Funder

LRC-Yves Rocard-CEA/ENS

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3