Interhemispheric Coupling Mechanisms in the Middle Atmosphere of WACCM6

Author:

Smith A. K.1,Pedatella N. M.2,Mullen Z. K.3

Affiliation:

1. Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado

2. High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado

3. Department of Computer Science, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Simulations with the Community Earth System Model, version 2, using the Whole Atmosphere Community Climate Model version 6 [CESM2(WACCM6)] configuration, show evidence of dynamical coupling from the high latitudes of the winter middle atmosphere to the tropics and the middle and high latitudes of the summer hemisphere. Analysis of monthly and daily output covering 195 simulation years indicates that the response in the summer middle and high latitudes has a weak overall magnitude of a few kelvins or less in temperature but has a repeatable pattern whose structure and phase agree with observational studies. Lag correlation indicates that perturbations in wave activity in the winter stratosphere, as quantified by Eliassen–Palm (EP) flux divergence, are accompanied by perturbations in the transformed Eulerian-mean meridional wind extending into the summer hemisphere. There is not an appreciable correlation with momentum forcing in the summer hemisphere by either resolved waves or parameterized gravity waves. The rapid circulation response and the lack of a wave response in the summer hemisphere suggest that the interhemispheric coupling that is simulated in WACCM6 in both the stratosphere and the mesosphere owes its existence to a circulation that develops to restore balance to the zonally averaged state of the atmosphere. This is an alternative explanation for the coupling from the winter stratosphere to the summer mesosphere; previous studies have assumed a necessary role for wave activity in the summer hemisphere.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3