Multimoment Ice Bulk Microphysics Scheme with Consideration for Particle Shape and Apparent Density. Part I: Methodology and Idealized Simulation

Author:

Tsai Tzu-Chin1,Chen Jen-Ping2ORCID

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. Department of Atmospheric Sciences, and International Degree Program on Climate Change and Sustainable Development, National Taiwan University, Taipei, Taiwan

Abstract

AbstractTo improve the parameterization of ice-phase microphysics in regional meteorological models, this study developed a triple-moment bulk scheme, which also tracks the variations in the shape and density of several hydrometeors. Solid-phase hydrometeors are classified into pristine ice, snow aggregates, rimed ice, and hailstones based on their physical mechanisms. The new scheme has been incorporated into the Weather Research and Forecasting Model and tested with an idealized two-dimensional simulation of a squall-line system. The simulation successfully revealed the smooth transition from the convective core to the stratiform anvil as well as the alternating pattern in the hydrometeor vertical distributions, as was similarly demonstrated in other similar studies. A few sensitivity tests were performed to reveal the importance of including shape and density variations, which strongly affect the mean particle size by up to 50% and fall speed by as much as 100% for individual hydrometeor categories. Furthermore, the inclusion of a third moment could enhance the diffusional growth rate of small crystals and reduce the ventilation effect of large particles compared with the conventional double-moment approach. These factors have a significant influence on cloud structure and precipitation amounts.

Funder

National Science Council

Ministry of Science and Technology, Taiwan

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3