Reduced‐Order Modeling for Linearized Representations of Microphysical Process Rates

Author:

Lamb K. D.1ORCID,van Lier‐Walqui M.23ORCID,Santos S.4ORCID,Morrison H.5ORCID

Affiliation:

1. Department of Earth and Environmental Engineering Columbia University New York NY USA

2. Center for Climate Systems Research Columbia University New York NY USA

3. NASA Goddard Institute for Space Studies New York NY USA

4. Pacific Northwest National Laboratory Richland WA USA

5. National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractRepresenting cloud microphysical processes in large scale atmospheric models is challenging because many processes depend on the details of the droplet size distribution (DSD, the spectrum of droplets with different sizes in a cloud). While full or partial statistical moments of droplet size distributions are the typical variables used in bulk models, prognostic moments are limited in their ability to represent microphysical processes across the range of conditions experienced in the atmosphere. Microphysical parameterizations employing prognostic moments are known to suffer from structural uncertainty in their representations of inherently higher dimensional cloud processes, which limit model fidelity and lead to forecasting errors. Here we investigate how data‐driven reduced‐order modeling can be used to learn predictors for microphysical process rates in bulk microphysics schemes in an unsupervised manner from higher dimensional bin distributions. Using simulations characteristic of marine stratiform clouds, we simultaneously learn lower dimensional representations of droplet size distributions and predict the evolution of the microphysical state of the system. Droplet collision‐coalescence, the main process for generating warm rain, is estimated to have an intrinsic dimension of three. This intrinsic dimension provides a lower limit on the number of degrees of freedom needed to accurately represent collision‐coalescence in models. We demonstrate how deep learning based reduced‐order modeling can be used to discover intrinsic coordinates describing the microphysical state of the system, where process rates such as collision‐coalescence are globally linearized. These implicitly learned representations of the DSD retain more information about the DSD than typical moment‐based representations.

Funder

Office of Science

National Science Foundation

Publisher

American Geophysical Union (AGU)

Reference42 articles.

1. Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation

2. Data-driven discovery of coordinates and governing equations

3. Chen B. Huang K. Raghupathi S. Chandratreya I. Du Q. &Lipson H.(2021).Discovering state variables hidden in experimental data. arXiv preprint arXiv:2112.10755.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3