Improvement of the Temperature and Moisture Retrievals in the Lower Troposphere Using AIRS and GPS Radio Occultation Measurements

Author:

Ho Shu-Peng1,Kuo Ying-Hwa2,Sokolovskiy Sergey3

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. National Center for Atmospheric Research,* and University Corporation for Atmospheric Research, Boulder, Colorado

3. University Corporation for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Accurate temperature and water vapor profiles in the middle and lower troposphere (LT) are crucial for understanding the water cycle, cloud systems, and energy balance. Global positioning system (GPS) radio occultation (RO) is the first technique that can provide a high-vertical-resolution all-weather refractivity profile, which is a function of pressure, temperature, and moisture. However, in the moist LT over the Tropics, the refractivity retrievals from GPS RO data are often significantly negatively biased because of tracking errors and propagation effects related to sharp vertical moisture gradients that may result in superrefraction (SR). The Atmospheric Infrared Sounder (AIRS) is a nadir-viewing sounder that can measure vertical temperature and moisture profiles with about 1–2-km vertical resolution. However, AIRS observations cannot usually obtain accurate temperature and water vapor profiles in the planetary boundary layer (PBL) because of the poor resolving power in the LT. This study uses simulations based on radiosonde profiles by combining the AIRS and the GPS RO measurements to obtain the best temperature and moisture retrievals in the LT. Different approaches are used for the drier LT and the moist LT. For the drier LT, where GPS RO data are not affected by SR errors, a multivariable regression algorithm for inverting the combined AIRS and GPS RO measurements is used. In the moist LT (e.g., SR on top of PBL), the combined AIRS and GPS RO regression inversion above the LT is used as the first guess for AIRS-only physical retrieval, which is extended into the LT. The results show that combining AIRS and GPS RO data effectively constrains the individual solutions, and therefore significantly improves inversion results. The algorithm is also applied for all available radiosonde profiles (19 profiles) over a 1-month period from the site characterized by strong SR on top of the PBL. Retrieved temperature and water vapor profiles yield unbiased low-resolution refractivity profiles in the PBL.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3