Challenges in Numerical Weather Prediction of the 10 August 2020 Midwestern Derecho: Examples from the FV3-LAM

Author:

Gallus William A.1ORCID,Harrold Michelle A.2

Affiliation:

1. a Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. b National Center for Atmospheric Research/Research Applications Laboratory and Developmental Testbed Center, Boulder, Colorado

Abstract

Abstract A severe derecho impacted the Midwestern United States on 10 August 2020, causing over $12 billion (U.S. dollars) in damage, and producing peak winds estimated at 63 m s−1, with the worst impacts in Iowa. The event was not forecast well by operational forecasters, nor even by operational and quasi-operational convection-allowing models. In the present study, nine simulations are performed using the Limited Area Model version of the Finite-Volume-Cubed-Sphere model (FV3-LAM) with three horizontal grid spacings and two physics suites. In addition, when a prototype of the Rapid Refresh Forecast System (RRFS) physics is used, sensitivity tests are performed to examine the impact of using the Grell–Freitas (GF) convective scheme. Several unusual results are obtained. With both the RRFS (not using GF) and Global Forecast System (GFS) physics suites, simulations using relatively coarse 13- and 25-km horizontal grid spacing do a much better job of showing an organized convective system in Iowa during the daylight hours of 10 August than the 3-km grid spacing runs. In addition, the RRFS run with 25-km grid spacing becomes much worse when the GF convective scheme is used. The 3-km RRFS run that does not use the GF scheme develops spurious nocturnal convection the night before the derecho, removing instability and preventing the derecho from being simulated at all. When GF is used, the spurious storms are removed and an excellent forecast is obtained with an intense bowing echo, exceptionally strong cold pool, and roughly 50 m s−1 surface wind gusts.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. Derecho hazards in the United States;Ashley, W. S.,2005

2. Bow echo mesovortices. Part I: Processes that influence their damaging potential;Atkins, N. T.,2009

3. Benjamin, S. G., S. S. Weygandt, T. G. Smirnova, M. Hu, S. E. Peckham, J. M. Brown, K. Brundage, and G. S. Manikin, 2009: Assimilation of radar reflectivity data using a diabatic digital filter: Applications to the Rapid Update Cycle and Rapid Refresh and initialization of High Resolution Rapid Refresh forecasts with RUC/RR grids. 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Phoenix, AZ, Amer. Meteor. Soc., 7B.6, https://ams.confex.com/ams/89annual/webprogram/Paper150469.html.

4. Benjamin, S. G., S. S. Weygandt, C. R. Alexander, J. M. Brown, T. G. Smirnova, P. Hofmann, E. James, and G. Dimego, 2011: NOAA’s hourly-updated 3km HRRR and RUC/Rapid Refresh—Recent (2010) and upcoming changes toward improving weather guidance for air-traffic management. Second Aviation, Range, and Aerospace Meteorology Special Symp. on Weather–Air Traffic Management Integration, Seattle, WA, Amer. Meteor. Soc., 3.2, https://ams.confex.com/ams/91Annual/webprogram/Paper185659.html.

5. Benjamin, S. G., and Coauthors, 2013: Data assimilation and model updates in the 2013 Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) analysis and forecast systems. NCEP/EMC Meeting, Washington, DC, NCEP/EMC/Model Evaluation Group.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3