Near-Surface Intensification of Tornado Vortices

Author:

Lewellen D. C.1,Lewellen W. S.1

Affiliation:

1. West Virginia University, Morgantown, West Virginia

Abstract

Abstract An idealized analytical model and numerical large-eddy simulations are used to explore fluid-dynamic mechanisms by which tornadoes may be intensified near the surface relative to conditions aloft. The analytical model generalizes a simple model of Barcilon and Fiedler and Rotunno for a steady supercritical end-wall vortex to more general vortex corner flows, angular momentum distributions, and time dependence. The model illustrates the role played by the corner flow swirl ratio in determining corner flow structure and intensification; predicts an intensification of near-surface swirl velocities relative to conditions aloft of Iυ ∼ 2 for supercritical end-wall vortices in agreement with earlier analytical, numerical, and laboratory results; and suggests how larger intensification factors might be achieved in some more general corner flows. Examples of the latter are presented using large-eddy simulations. By tuning the lateral inflow boundary conditions near the surface, quasi-steady vortices exhibiting nested inner and outer corner flows and Iυ ∼ 4 are produced. More significantly, these features can be produced without fine tuning, along with an additional doubling (or more) of the intensification, in a broad class of unsteady evolutions producing a dynamic corner flow collapse. These scenarios, triggered purely by changes in the far-field near-surface flow, provide an attractive mechanism for naturally achieving an intense near-surface vortex from a much larger-scale less-intense swirling flow. It is argued that, applied on different scales, this may sometimes play a role in tornadogenesis and/or tornado variability. This phenomenon of corner flow collapse is considered further in a companion paper.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Baker, G. L. , 1981: Boundary layers in laminar vortex flows. Ph.D. thesis, Purdue University, 143 pp.

2. Measurements of core radii and peak velocities in modeled atmospheric vortices.;Baker;J. Atmos. Sci.,1979

3. Vortex decay above a stationary boundary.;Barcilon;J. Fluid Mech.,1967

4. Theory of the vortex break down phenomenon.;Benjamin;J. Fluid Mech.,1962

5. Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part I: Tornadogenesis.;Bluestein;Mon. Wea. Rev.,2003

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3