A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of Simulation, Storm-Scale Evolution, and Environmental Contribution

Author:

Chen Xiaomin1,Wang Yuqing2,Zhao Kun3,Wu Dan4

Affiliation:

1. Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Sciences, Nanjing University, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

2. International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Sciences, Nanjing University, Nanjing, China

4. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China

Abstract

Typhoon Vicente (2012) underwent an extreme rapid intensification (RI) over the northern South China Sea just before its landfall in south China. The extreme RI, the sudden track deflection, and the inner- and outer-core structures of Vicente were reasonably reproduced in an Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model simulation. The evolutions of the axisymmetric inner-core radar reflectivity and the primary circulation of the simulated Vicente before its landfall were verified against the Doppler radar observations. Two intensification stages were identified: 1) the asymmetric intensification stage (i.e., RI onset), represented by a relatively slow intensification rate accompanied by a distinct eyewall contraction; and 2) the axisymmetric RI stage with very slow eyewall contraction. Results from a storm-scale tangential wind tendency budget indicated that the primary spinup mechanism during the first stage was the radial eddy momentum transport, which was beneficial to accelerate primary circulation inside the radius of maximum wind (RMW) and thus conducive to eyewall contraction. In contrast, the principal spinup mechanism during the second stage was mainly ascribed to the forced secondary circulation in response to diabatic heating in the eyewall and boundary layer friction, which efficiently transported the absolute angular momentum radially inward and vertically upward to increase the primary circulation in the eyewall region throughout the troposphere. Further analysis revealed that the interaction between the monsoon circulation and storm-scale vorticity anomalies played an important role in erecting the tilted vortex and spinning up the midtropospheric TC circulation during the first stage.

Funder

National Basic Research and Development Project (973 program) of China

National Natural Science Foundation of China

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3