Feasibility Study of the Reconstruction of Historical Weather with Data Assimilation

Author:

Toride Kinya1,Neluwala Panduka1,Kim Hyungjun2,Yoshimura Kei3

Affiliation:

1. Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

2. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

3. Institute of Industrial Science, and Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Abstract

There is a large amount of documented weather information all over the world, including Asia (e.g., old diaries, log books, etc.). The ultimate goal of this study is to reconstruct historical weather by deriving total cloud cover (TCC) from historically documented weather records and to assimilate them using a general circulation model and a data assimilation scheme. Two experiments are performed using the Global Spectral Model and an ensemble Kalman filter: 1) a reanalysis data experiment and 2) a ground observation data experiment, for 18 synthesized observation stations in Japan according to the Historical Weather Data Base. By assuming that weather records can be converted into three TCC categories, the synthetic observation data of daily TCC are created from reanalysis data, with a large observation error of 30%, and by classifying ground observation data into the three categories. Compared with the simulation without assimilation of any observation, the results of the reanalysis data experiment show improvements, not only in TCC but also in other meteorological variables (e.g., humidity, precipitation, precipitable water, wind, and pressure). For specific humidity at 2 m above the surface, the monthly averaged root-mean-square error is reduced by 18%–22% downstream of the assimilated region. The results of the ground observation data experiment are not as successful as a result of additional error sources, indicating the bias needs to be handled correctly. By showing improvements with the loosely classified cloud information, the feasibility of the developed model to be applied for historical weather reconstruction is confirmed.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science, and Technology

Core Research for Evolutional Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

1. Private diaries as information sources in climate research

2. Alpert, J. C., M. Kanamitsu, P. M. Calpan, J. Sela, G. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

3. Spatially and temporally varying adaptive covariance inflation for ensemble filters

4. Identification of climatic state with limited proxy data

5. The reconstruction of eighteenth century temperature records through the use of content analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3