Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset
-
Published:2023-02-07
Issue:1
Volume:30
Page:37-47
-
ISSN:1607-7946
-
Container-title:Nonlinear Processes in Geophysics
-
language:en
-
Short-container-title:Nonlin. Processes Geophys.
Author:
Gorokhovsky EliaORCID, Anderson Jeffrey L.
Abstract
Abstract. Data assimilation (DA), the statistical combination of
computer models with measurements, is applied in a variety of scientific
fields involving forecasting of dynamical systems, most prominently in
atmospheric and ocean sciences. The existence of misreported or unknown
observation times (time error) poses a unique and interesting problem for
DA. Mapping observations to incorrect times causes bias in the prior state
and affects assimilation. Algorithms that can improve the performance of
ensemble Kalman filter DA in the presence of observing time error are
described. Algorithms that can estimate the distribution of time error are
also developed. These algorithms are then combined to produce extensions to
ensemble Kalman filters that can both estimate and correct for observation
time errors. A low-order dynamical system is used to evaluate the
performance of these methods for a range of magnitudes of observation time
error. The most successful algorithms must explicitly account for the
nonlinearity in the evolution of the prediction model.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Reference31 articles.
1. Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A review of global ocean temperature observations:
Implications for ocean heat content estimates and climate change, Rev.
Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022, 2013. 2. Amrhein, D. E.: How large are temporal representativeness errors in paleoclimatology?, Clim. Past, 16, 325–340, https://doi.org/10.5194/cp-16-325-2020, 2020. 3. Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903,
https://doi.org/10.1175/1520-0493(2001)129<2884:Aeakff>2.0.Co;2, 2001. 4. Anderson, J. L.: A local least squares framework for ensemble filtering,
Mon. Weather Rev., 131, 634–642,
https://doi.org/10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2, 2003. 5. Anderson, J. L.: Data and code used to generate figures in Gorokhovsky and Anderson, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7576692, 2023.
|
|