Ensemble Sensitivity Analysis of Wind Ramp Events with Applications to Observation Targeting

Author:

Smith Nicholas H.1,Ancell Brian C.1

Affiliation:

1. Texas Tech University, Lubbock, Texas

Abstract

Wind ramps present a significant challenge to the wind energy industry and are a source of inefficiency for wind farm owners and power grid operators. One approach to investigating wind ramp predictability is ensemble sensitivity analysis (ESA), which relates a scalar response function to an atmospheric variable at an earlier time. Applying ESA to wind ramps is challenging because the transient nature of the events makes it difficult to capture the ramp with a traditional response function that is fixed in space and time. This study introduces four response functions that are allowed to vary in space and time in order to identify key features of the wind ramp, such as the timing of the ramp and the largest horizontal extent of the ramp. Comparing these event-based response functions to a traditional response function reveals key differences in the sensitivity, which indicates that different aspects of the wind ramp event are sensitive to different atmospheric features. The use of multiple response functions is shown to provide a more complete understanding of the ramp event when compared to using only a traditional response function. Observation targeting is addressed by manipulating the ESA fields of six synoptically driven wind ramp events, with results showing that the horizontal location of the optimal target region varies widely between cases and a single observation location likely would not provide benefit to each case. These results indicate that a dynamic observing system would be preferable to a fixed observation for improving wind ramp forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3