Application of Physical Filter Initialization in 4DVar

Author:

Peng Wei12,Liang Xudong1,Zhang Xin3,Huang Xiangyu4,Lu Bing2,Fu Qiao5

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

3. IBM Research–China, Beijing, China

4. Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore

5. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Abstract

Abstract Generally, the results of data assimilation are not well balanced dynamically due to errors in background, observations, or the model itself. So, initialization methods have been introduced to remove spurious gravity waves from the analysis. One of the initialization methods is digital filter initialization (DFI), which has been used in operational forecast systems, though its physical meaning is not well understood. Other methods eliminate high-frequency noise in optimized initial conditions by introducing physical constraints, such as the model constraint scheme, which minimizes the time tendency of model variables. In this study, a physical filter initialization (PFI) scheme, based on the model constraint scheme, is implemented in the four-dimensional variational data assimilation (4DVar) system of the Weather Research and Forecasting (WRF) Model. The impacts of the PFI scheme are examined by both single-observation and real-data experiments. The results indicate that the PFI scheme can eliminate high-frequency noise effectively, obtain flow-dependent analysis increments, and shorten forecast spinup time. Consequently, the precipitation forecast is improved to a certain extent, especially during the first few hours thanks to the shorter spinup time.

Funder

National Basic Research Program of China

National Key Technology R&D Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3