Ensemble–Variational Integrated Localized Data Assimilation

Author:

Auligné Thomas1,Ménétrier Benjamin2,Lorenc Andrew C.3,Buehner Mark4

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado, and Joint Center for Satellite Data Assimilation, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

2. National Center for Atmospheric Research, Boulder, Colorado

3. Met Office, Exeter, United Kingdom

4. Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada

Abstract

Hybrid variational–ensemble data assimilation (hybrid DA) is widely used in research and operational systems, and it is considered the current state of the art for the initialization of numerical weather prediction models. However, hybrid DA requires a separate ensemble DA to estimate the uncertainty in the deterministic variational DA, which can be suboptimal both technically and scientifically. A new framework called the ensemble–variational integrated localized (EVIL) data assimilation addresses this inconvenience by updating the ensemble analyses using information from the variational deterministic system. The goal of EVIL is to encompass and generalize existing ensemble Kalman filter methods in a variational framework. Particular attention is devoted to the affordability and efficiency of the algorithm in preparation for operational applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tailoring data assimilation to discontinuous Galerkin models;Quarterly Journal of the Royal Meteorological Society;2024-05-17

2. A 4D-Var method with flow-dependent background covariances for the shallow-water equations;Statistics and Computing;2022-08

3. An Optimal Linear Transformation for Data Assimilation;Journal of Advances in Modeling Earth Systems;2022-06

4. Integrated Hybrid Data Assimilation for an Ensemble Kalman Filter;Monthly Weather Review;2021-12

5. The Maximum Likelihood Ensemble Filter with State Space Localization;Monthly Weather Review;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3