Variability of Precipitation along Cold Fronts in Idealized Baroclinic Waves

Author:

Norris Jesse1,Vaughan Geraint1,Schultz David M.1

Affiliation:

1. Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Precipitation patterns along cold fronts can exhibit a variety of morphologies including narrow cold-frontal rainbands and core-and-gap structures. A three-dimensional primitive equation model is used to investigate alongfront variability of precipitation in an idealized baroclinic wave. Along the poleward part of the cold front, a narrow line of precipitation develops. Along the equatorward part of the cold front, precipitation cores and gaps form. The difference between the two evolutions is due to differences in the orientation of vertical shear near the front in the lower troposphere: at the poleward end the along-frontal shear is dominant and the front is in near-thermal wind balance, while at the equatorward end the cross-frontal shear is almost as large. At the poleward end, the thermal structure remains erect with the front well defined up to the midtroposphere, hence updrafts remain erect and precipitation falls in a continuous line along the front. At the equatorward end, the cores form as undulations appear in both the prefrontal and postfrontal lighter precipitation, associated with vorticity maxima moving along the front on either side. Cross-frontal winds aloft tilt updrafts, so that some precipitation falls ahead of the surface cold front, forming the cores. Sensitivity simulations are also presented in which SST and roughness length are varied between simulations. Larger SST reduces cross-frontal winds aloft and leads to a more continuous rainband. Larger roughness length destroys the surface wind shift and thermal gradient, allowing mesovortices to dominate the precipitation distribution, leading to distinctive and irregularly shaped, quasi-regularly spaced precipitation maxima.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3