Analysis of Snow Multibands and Their Environments with High-Resolution Idealized Simulations

Author:

Leonardo Nicholas M.1,Colle Brian A.1

Affiliation:

1. a School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Abstract

Abstract Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used to analyze the precipitation structures and their evolution in the comma head of a developing extratropical cyclone. After the cyclone spins up by hour 120, snow multibands develop within a wedge-shaped region east of the near-surface low center within a region of 700–500-hPa potential and conditional instability. The cells deepen and elongate northeastward as they propagate north. There is also an increase in 600–500-hPa southwesterly vertical wind shear prior to band development. The system stops producing bands 12 h later as the differential moisture advection weakens, and the instability is depleted by the convection. Sensitivity experiments are run in which the initial stability and horizontal temperature gradient of the baroclinic wave are adjusted by 5%–10%. A 10% decrease in initial instability results in less than half the control run potential instability by 120 h and the cyclone fails to produce multibands. Meanwhile, a 5% decrease in instability delays the development of multibands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by 10% delays the growth of vertical shear and instability, corresponding to multibands developing 12–18 h later. Conversely, increasing the horizontal temperature gradient by 10% corresponds to greater vertical shear, resulting in more prolific multiband activity developing ∼12 h earlier. Overall, the relatively large changes in band characteristics over a ∼12-h period (120–133 h) and band evolutions for the sensitivity experiments highlight the potential predictability challenges. Significance Statement Multiple-banded precipitation structures are difficult to predict and can greatly impact snowfall forecasts. This study investigates the precipitation bands in the comma head of a low pressure system in a numerical model to systematically isolate the roles of different ambient conditions. The results emphasize that environments with instability (e.g., air free to rise after small upward displacement) and increasing winds with height favor the development of banded structures. The forecast challenge for these bands is illustrated by starting the model with relatively small changes in the temperature field. Decreasing the instability by 10% suppresses band development, while increasing (decreasing) the horizontal temperature change across the system by 10% corresponds to the bands developing 12 h earlier (later).

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Reference32 articles.

1. Distribution of single-banded snowfall in central U.S. cyclones;Baxter, M. A.,2017

2. Validation of snow multibands in the comma head of an extratropical cyclone using a 40-member ensemble;Connelly, R.,2019

3. The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description;Dowell, D. C.,2022

4. The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation;Evans, A. G.,2005

5. The three-front model, the developing depression and the occluding process;Galloway, J. L.,1960

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3