Sensitivity of Convection-Allowing Forecasts to Land Surface Model Perturbations and Implications for Ensemble Design

Author:

Duda Jeffrey D.1,Wang Xuguang1,Xue Ming2

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract In this exploratory study, a series of perturbations to the land surface model (LSM) component of the Weather Research and Forecasting (WRF) Model was developed to investigate the sensitivity of forecasts of severe thunderstorms and heavy precipitation at 4-km grid spacing and whether such perturbations could improve ensemble forecasts at this scale. The perturbations (generated using a combination of perturbing fixed parameters and using separate schemes, one of which—Noah-MP—is new among the WRF modeling community) were applied to a 10-member ensemble including other mixed physics parameterizations and compared against an identically configured ensemble that did not include the LSM perturbations to determine their impact on probabilistic forecasts. A third ensemble using only the LSM perturbations was also configured. The results from 14 (in total) 36-h ensemble forecasts suggested the LSM perturbations resulted in systematic improvement in ensemble dispersion and error characteristics. Lower-tropospheric temperature, moisture, and wind fields were all improved, as were probabilistic precipitation forecasts. Biases were not systematically altered, although some outlier members are present. Examination of near-surface temperature and mixing ratio fields, surface energy fluxes, and soil fields revealed tendencies caused by certain perturbations. A case study featuring tornadic supercells illustrated the physical causes of some of these tendencies. The results of this study suggest LSM perturbations can sample a dimension of model error not yet sampled systematically in most ensembles and should be included in convection-allowing ensembles.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3