Summer Rainfall Forecast Spread in an Ensemble Initialized with Different Soil Moisture Analyses

Author:

Aligo Eric A.1,Gallus William A.1,Segal Moti2

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. Department of Agronomy, Iowa State University, Ames, Iowa

Abstract

Abstract The performance of an ensemble forecasting system initialized using varied soil moisture alone has been evaluated for rainfall forecasts of six warm season convective cases. Ten different soil moisture analyses were used as initial conditions in the ensemble, which used the Weather Research and Forecasting (WRF) Advanced Research WRF (ARW) model at 4-km horizontal grid spacing with explicit rainfall. Soil moisture analyses from the suite of National Weather Service operational models—the Rapid Update Cycle, the North American Model (formerly known as the Eta Model), and the Global Forecasting System—were used to design the 10-member ensemble. For added insight, two other runs with extremely low and high soil moistures were included in this study. Although the sensitivity of simulated 24-h rainfall to soil moisture was occasionally substantial in both weakly forced and strongly forced cases, a U-shaped rank histogram indicated insufficient spread in the 10-member ensemble. This result suggests that ensemble forecast systems using soil moisture perturbations alone might not add enough variability to rainfall forecasts. Perturbations to both atmospheric initial conditions and land surface initial conditions as well as perturbations to other aspects of model physics may increase forecast spread. Correspondence ratio values for the 0.01- and 0.5-in. rainfall thresholds imply some spread in the soil moisture ensemble, but mainly in the weakly forced cases. Relative operating characteristic curves for the 10-member ensemble and for various rainfall thresholds indicate modest skill for all thresholds with the most skill associated with the lowest rainfall threshold, a result typical of warm season events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. Cluster analysis of multimodel ensemble data from SAMEX.;Alhamed;Mon. Wea. Rev.,2002

2. Baldwin, M. E., and K. E.Mitchell, 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

3. Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model.;Benjamin;Mon. Wea. Rev.,2004

4. Probabilistic predictions of precipitation using the ECMWF ensemble prediction system.;Buizza;Wea. Forecasting,1999

5. Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection.;Clark;J. Appl. Meteor.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3