Wind Structure Discrepancies between Two Best Track Datasets for Western North Pacific Tropical Cyclones

Author:

Song Jinjie1,Klotzbach Philip J.2

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, and Joint Center for Atmospheric Radar Research of Centre of Modern Analysis/Nanjing University (CMA/NJU), Nanjing, China

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Symmetric and wavenumber-1 asymmetric characteristics of western North Pacific tropical cyclone (TC) outer wind structures are compared between best tracks from the Joint Typhoon Warning Center (JTWC) and the Japan Meteorological Agency (JMA) from 2004 to 2014 as well as the Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) product from 2007 to 2014. Significant linear relationships of averaged wind radii are obtained among datasets, in which both gale-force and storm-force wind radii are generally estimated slightly smaller (much larger) by JTWC (JMA) than by MTCSWA. These correlations are strongly related to TC intensity relationships discussed in earlier work. Moreover, JTWC (JMA) on average represents a smaller (greater) derived shape parameter than MTCSWA does, implying that JTWC (JMA) typically assesses a more compact (less compact) storm than MTCSWA. For the wavenumber-1 asymmetry, large differences among datasets are found regardless of the magnitude or the direction of the longest radius. JTWC estimates more asymmetric storms than JMA, and it provides greater wavenumber-1 asymmetry magnitudes on average. Asymmetric storms are most frequently oriented toward the east, northeast, and north in JTWC and MTCSWA, whereas they are most frequently oriented toward the southeast, east, and northeast in JMA. The direction of the longest gale-force (storm force) wind radius in JTWC is statistically rotated 18° (32°) clockwise to that in JMA. Although the wind radii in JTWC are of higher quality than those in JMA when using MTCSWA as a baseline, there remains a need to provide a consistent and reliable wind radii estimating process among operational centers.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3