Preliminary Test of a Data Assimilation System with a Regional High-Resolution Atmosphere–Ocean Coupled Model Based on an Ensemble Kalman Filter

Author:

Kunii Masaru1,Ito Kosuke2,Wada Akiyoshi3

Affiliation:

1. Forecast Research Department, Meteorological Research Institute, Tsukuba, Japan

2. Forecast Research Department, Meteorological Research Institute, Tsukuba, and Department of Physics and Geosciences, University of the Ryukyus, Okinawa, Japan

3. Typhoon Research Department, Meteorological Research Institute, Tsukuba, Japan

Abstract

An ensemble Kalman filter (EnKF) that uses a regional mesoscale atmosphere–ocean coupled model was preliminarily examined to provide realistic sea surface temperature (SST) estimates and to represent the uncertainties of SST in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which time a tropical cyclone (TC) as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model reproduced SST distributions realistically even without assimilating SST and sea surface salinity observations, and atmospheric variables provided to ocean models can, therefore, control oceanic variables physically to some extent. The forecast error covariance calculated in the EnKF with the coupled model showed dependency on oceanic vertical mixing for near-surface atmospheric variables due to the difference of variability between the atmosphere and the ocean as well as the influence of SST variations on the atmospheric boundary layer. The EnKF with the coupled model reproduced the intensity change of Typhoon Halong (2014) during the mature phase more realistically than with an uncoupled atmosphere model, although there remained a degradation of the SST estimate, particularly around the Kuroshio region. This suggests that an atmosphere–ocean coupled data assimilation system should be developed that is able to physically control both atmospheric and oceanic variables.

Funder

Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3