Ensemble-Based Simultaneous State and Parameter Estimation in a Two-Dimensional Sea-Breeze Model

Author:

Aksoy Altuğ1,Zhang Fuqing1,Nielsen-Gammon John W.1

Affiliation:

1. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Abstract

Abstract The performance of the ensemble Kalman filter (EnKF) in forced, dissipative flow under imperfect-model conditions is investigated through simultaneous state and parameter estimation where the source of model error is the uncertainty in the model parameters. A two-dimensional, nonlinear, hydrostatic, nonrotating, and incompressible sea-breeze model is used for this purpose with buoyancy and vorticity as the prognostic variables and a square root filter with covariance localization is employed. To control filter divergence caused by the narrowing of parameter variance, a “conditional covariance inflation” method is devised. Up to six model parameters are subjected to estimation attempts in various experiments. While the estimation of single imperfect parameters results in error of model variables that is indistinguishable from the respective perfect-parameter cases, increasing the number of estimated parameters to six inevitably leads to a decline in the level of improvement achieved by parameter estimation. However, the overall EnKF performance in terms of the error statistics is still superior to the situation where there is parameter error but no parameter estimation is performed. In fact, compared with that situation, the simultaneous estimation of six parameters reduces the average error in buoyancy and vorticity by 40% and 46%, respectively. Several aspects of the filter configuration (e.g., observation location, ensemble size, radius of influence, and parameter variance limit) are found to considerably influence the identifiability of the parameters. The parameter-dependent response to such factors implies strong nonlinearity between the parameters and the state of the model and suggests that a straightforward spatial covariance localization does not necessarily produce optimality.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3