Affiliation:
1. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
2. National Center for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
The life cycle of individual (initially line shaped) contrails behind aircraft and of contrail cirrus (aged contrails mixed with other ice clouds) is described. The full contrail life cycle is covered, from ice formation for given water, heat, and particulate emissions; to changes in the jet, wake, and dispersion phases; through final sublimation or sedimentation. Contrail properties are deduced from various in situ, remote sensing, and model studies. Aerodynamically induced contrails and distrails are explained briefly. Contrails form both in clear air and inside cirrus. Young contrails consume most of the ambient ice supersaturation. Optical properties of contrails are age and humidity dependent. Contrail occurrence and radiative forcing depends on the ambient Earth–atmosphere conditions. Contrail cirrus seems to be optically thicker than assessed previously and may not only increase cirrus coverage but also thicken existing cirrus. Some observational constraints for contrail cirrus occurrence and radiative forcing are derived. Key parameters controlling contrail properties—besides aircraft and fuel properties, ambient pressure, temperature, and humidity—are the number of ice particles per flight distance surviving the wake vortex phase, the contrail depth, and particle sedimentation, wind shear, turbulence, and vertical motions controlling contrail dispersion. The climate impact of contrails depends among other things on the ratio of shortwave to longwave radiative forcing (RF) and on the efficacy with which contrail RF contributes to surface warming. Several open issues are identified, including renucleation from residuals of sublimated contrail ice particles.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Oceanography
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献