A Multigrid Wave Forecasting Model: A New Paradigm in Operational Wave Forecasting

Author:

Chawla Arun1,Tolman Hendrik L.1,Gerald Vera1,Spindler Deanna2,Spindler Todd2,Alves Jose-Henrique G. M.3,Cao Degui4,Hanson Jeffrey L.5,Devaliere Eve-Marie5

Affiliation:

1. NOAA/NCEP, College Park, Maryland

2. IMSG at NOAA/NCEP, Rockville, Maryland

3. SRG at NOAA/NCEP, Camp Spring, Maryland

4. SAIC at NOAA/NCEP, Greenbelt, Maryland

5. USACE Field Research Facility, Kitty Hawk, North Carolina

Abstract

Abstract A new operational wave forecasting system has been implemented at the National Centers for Environmental Prediction (NCEP) using the third public release of WAVEWATCH III. The new system uses a mosaic of grids with two-way nesting in a single model. This global system replaces a previous operational wave modeling suite (based on the second release of WAVEWATCH III). The new forecast system consists of nine grids at different resolutions to provide the National Weather Service (NWS) and NCEP centers with model guidance of suitable resolution for all areas where they have the responsibility of providing gridded forecast products. New features introduced in WAVEWATCH III, such as two-way nesting between grids and carving out selected areas of the computational domain, have allowed the operational model to increase spatial resolution and extend the global domain closer to the North Pole, while at the same time optimizing the computational cost. A spectral partitioning algorithm has been implemented to separate individual sea states from the overall spectrum, thus providing additional products for multiple sea states. Field output data are now packed in version 2 of the gridded binary (GRIB2) format and apart from the standard mean wave parameters, they also include parameters of partitioned wave spectra. The partitioning is currently limited to three fields: the wind-wave component, and primary and secondary swells. The modeling system has been validated against data using a multiyear hindcast database as well as archived forecasts. A new software tool developed by the U.S. Army Corps of Engineers (USACE) is used to extend the analysis from overall error estimates to separate skill scores for wind seas and swells.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3