A Comparison of Statistical Approaches for Seasonal Precipitation Prediction in Pakistan

Author:

Ding Ting1,Ke Zongjian1

Affiliation:

1. National Climate Center, China Meteorological Administration, Beijing, China

Abstract

Abstract The present study focuses on two statistical approaches for improving seasonal precipitation prediction skills for Pakistan. Precipitation over Pakistan is concentrated in July–August (JA), when droughts and floods occur recurrently and cause disasters. Empirical orthogonal function (EOF) analysis is used to assess spatial patterns of precipitation, and two precipitation patterns are identified: a consistent pattern and a north–south dipole pattern. Two statistical approaches, the statistical regression method using prewinter predictors and statistical downscaling, are employed to perform rainfall predictions for JA in Pakistan. Linear regression (LR) and optimal subset regression (OSR) are used for each approach, and the regression forecast methods are compared with the raw model outputs. Historical data for large-scale variables from the NCEP–NCAR reanalysis and version 1.0 of the coupled atmosphere–ocean general circulation model from the Beijing Climate Center (CGCM1.0/BCC) outputs in 1986–2011 are used as predictors for the statistical prewinter method and statistical downscaling, respectively. In the majority of the years, the statistical prewinter method and statistical downscaling are able to correct the erroneous signs of the raw dynamical model output for the consistent pattern. The statistical prewinter method is found to provide more skillful predictions than the statistical downscaling on the prediction of the dipolelike pattern. The best prediction skills for the consistent pattern and dipolelike pattern are provided by NCEP-OSR and NCEP-LR, which have significant correlations of 0.39 and 0.40, respectively. For all the forecast methods in this study, prewinter prediction and downscaled prediction show considerable improvements when compared with model output. These statistical methods provide valuable approaches for studying local climates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3