Comparison between statistical and dynamical downscaling of rainfall over the Gwadar‐Ormara basin, Pakistan

Author:

Attique Raazia1ORCID,Rientjes Tom1ORCID,Booij Martijn2ORCID

Affiliation:

1. Department of Water Resources, Faculty of Geo‐Information Science and Earth Observation (ITC) University of Twente Enschede The Netherlands

2. Department of Water Engineering and Management, Faculty of Engineering Technology University of Twente Enschede The Netherlands

Abstract

AbstractThis paper evaluated and compared the performance of a statistical downscaling method and a dynamical downscaling method to simulate the spatial–temporal rainfall distribution. Outputs from RegCM4 Regional Climate Model (RCM) and the CanESM2 Atmosphere–Ocean General Circulation Model (AOGCM) were selected for the data scarce Gwadar‐Ormara basin, Pakistan. The evaluation was based on the climatological average and standard deviation for historic (1971–2000) and future (2041–2070) time periods under Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. The performance evaluation showed that statistical downscaling is preferred to simulate and project rainfall patterns in the study area. Additionally, the Statistical DownScaling Model (SDSM) showed low R2 values in calibration and validation of the simulations with respect to observed data for the historic period. Overall, SDSM generated satisfactory results in simulating the monthly rainfall cycle of the entire basin. In this study, RegCM4 showed large rainfall errors and missed one rainfall season in the historic period. This study also explored whether the grid‐based rainfall time series of the Asian Precipitation—Highly Resolved Observational Daily Integration Towards Evaluation (APHRODITE) dataset could be used to enlarge and complement the sample of in situ observed rainfall time series. A spatial correlogram was used for observed and APHRODITE rainfall data to assess the consistency between the two data sources, which resulted in rejecting APHRODITE data. For the future time period (2041–2070) under RCPs 4.5 and 8.5 scenarios, rainfall projections did not show significant difference for both downscaling approaches. This may relate to the driving model (CanESM2 AOGCM) and not necessarily suggests poor performance of downscaling; either statistical or dynamical. Hence, the study recommends evaluating a multi‐model ensemble including other GCMs and RCMs for the same area of study.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3