Abstract
The rough topography, harsh climate, and sparse monitoring stations have limited hydro-climatological studies in arid regions of Pakistan. Gauge-based gridded precipitation datasets provide an opportunity to assess the climate where stations are sparsely located. Though, the reliability of these datasets heavily depends on their ability to replicate the observed temporal variability and distribution patterns. Conventional correlation or error analyses are often not enough to justify the variability and distribution of precipitation. In the present study, mean bias error, mean absolute error, modified index of agreement, and Anderson–Darling test have been used to evaluate the performance of four widely used gauge-based gridded precipitation data products, namely, Global Precipitation Climatology Centre (GPCC), Climatic Research Unit (CRU); Asian Precipitation Highly Resolved Observational Data Integration towards Evaluation (APHRODITE), Center for Climatic Research—University of Delaware (UDel) at stations located in semi-arid, arid, and hyper-arid regions in the Balochistan province of Pakistan. The result revealed that the performance of different products varies with climate. However, GPCC precipitation data was found to perform much better in all climatic regions in terms of most of the statistical assessments conducted. As the temporal variability and distribution of precipitation are very important in many hydrological and climatic applications, it can be expected that the methods used in this study can be useful for the better assessment of gauge-based data for various applications.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献