Track and Intensity Forecasting of Hurricanes: Impact of Convection-Permitting Resolution and Global Ensemble Kalman Filter Analysis on 2010 Atlantic Season Forecasts

Author:

Xue Ming1,Schleif Jordan1,Kong Fanyou2,Thomas Kevin W.2,Wang Yunheng2,Zhu Kefeng2

Affiliation:

1. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Twice-daily 48-h tropical cyclone (TC) forecasts were produced for the fall 2010 Atlantic hurricane season using the Advanced Research core of the Weather Research and Forecasting (WRF-ARW) model on a large 4-km grid covering much of the northern Atlantic. WRF forecasts initialized from operational Global Forecast System (GFS) analyses based on the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVAR) system and from experimental global ensemble Kalman filter (EnKF) analyses, and corresponding global GFS forecasts were intercompared. For the track, WRF forecasts show improvement over GFS forecasts using either set of initial conditions (ICs). The EnKF-initialized GFS and WRF are also better than the corresponding GSI-initialized forecasts, but the difference is not always statistically significant. At all lead times, the WRF track errors are comparable to or smaller than the National Hurricane Center (NHC) official track forecast error, with those of the EnKF WRF being smallest. For weaker TCs, more improvement comes from the model (resolution) than from the ICs. For hurricane intensity TCs, EnKF ICs produce better track forecasts than GSI ICs, with the best forecast coming from WRF at most lead times. For intensity, EnKF ICs consistently outperform GSI ICs in both models for weaker TCs. For hurricane-strength TCs, EnKF ICs produce forecasts statistically indistinguishable from GSI ICs in either model. For all TCs combined, WRF produces about half the error of the corresponding GFS simulation beyond 24 h, and at 36 and 48 h, the errors are smaller than those from NHC official forecasts. The improvement is even greater for hurricane-strength TCs. Overall, the WRF forecasts initialized with EnKF ICs have the smallest intensity error, and the difference is statistically significant compared to the GFS forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3