Accounting for Model Error in Variational Data Assimilation: A Deterministic Formulation

Author:

Carrassi Alberto1,Vannitsem Stéphane1

Affiliation:

1. Institut Royal Météorologique de Belgique, Brussels, Belgium

Abstract

Abstract In data assimilation, observations are combined with the dynamics to get an estimate of the actual state of a natural system. The knowledge of the dynamics, under the form of a model, is unavoidably incomplete and model error affects the prediction accuracy together with the error in the initial condition. The variational assimilation theory provides a framework to deal with model error along with the uncertainties coming from other sources entering the state estimation. Nevertheless, even if the problem is formulated as Gaussian, accounting for model error requires the estimation of its covariances and correlations, which are difficult to estimate in practice, in particular because of the large system dimension and the lack of enough observations. Model error has been therefore either neglected or assumed to be an uncorrelated noise. In the present work, an approach to account for a deterministic model error in the variational assimilation is presented. Equations for its correlations are first derived along with an approximation suitable for practical applications. Based on these considerations, a new four-dimensional variational data assimilation (4DVar) weak-constraint algorithm is formulated and tested in the context of a linear unstable system and of the three-component Lorenz model, which has chaotic dynamics. The results demonstrate that this approach is superior in skill to both the strong-constraint and a weak-constraint variational assimilation that employs the uncorrelated noise model error assumption.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3