On the physical nudging equations

Author:

Conti GiovanniORCID,Aydoğdu Ali,Gualdi Silvio,Navarra Antonio,Tribbia Joe

Abstract

AbstractIn this work we show how it is possible to derive a new set of nudging equations, a tool still used in many data assimilation problems, starting from statistical physics considerations and availing ourselves of stochastic parameterizations that take into account unresolved interactions. The fluctuations used are thought of as Gaussian white noise with zero mean. The derivation is based on the conditioned Langevin dynamics technique. Exploiting the relation between the Fokker–Planck and the Langevin equations, the nudging equations are derived for a maximally observed system that converges towards the observations in finite time. The new nudging term found is the analog of the so called quantum potential of the Bohmian mechanics. In order to make the new nudging equations feasible for practical computations, two approximations are developed and used as bases from which extending this tool to non-perfectly observed systems. By means of a physical framework, in the zero noise limit, all the physical nudging parameters are fixed by the model under study and there is no need to tune other free ad-hoc variables. The limit of zero noise shows that also for the classical nudging equations it is necessary to use dynamical information to correct the typical relaxation term. A comparison of these approximations with a 3DVar scheme, that use a conjugate gradient minimization, is then shown in a series of four twin experiments that exploit low order chaotic models.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3