Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

Author:

Clark Adam J.1,Kain John S.1,Stensrud David J.1,Xue Ming2,Kong Fanyou3,Coniglio Michael C.1,Thomas Kevin W.3,Wang Yunheng3,Brewster Keith3,Gao Jidong3,Wang Xuguang2,Weiss Steven J.4,Du Jun5

Affiliation:

1. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

4. NOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma

5. NOAA/NWS/NCEP Environmental Modeling Center, Camp Springs, Maryland

Abstract

Probabilistic quantitative precipitation forecasts (PQPFs) from the storm-scale ensemble forecast system run by the Center for Analysis and Prediction of Storms during the spring of 2009 are evaluated using area under the relative operating characteristic curve (ROC area). ROC area, which measures discriminating ability, is examined for ensemble size n from 1 to 17 members and for spatial scales ranging from 4 to 200 km. Expectedly, incremental gains in skill decrease with increasing n. Significance tests comparing ROC areas for each n to those of the full 17-member ensemble revealed that more members are required to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time increases and spatial scale decreases. These results appear to reflect the broadening of the forecast probability distribution function (PDF) of future atmospheric states associated with decreasing spatial scale and increasing forecast lead time. They also illustrate that efficient allocation of computing resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast length desired.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3