Opposing Effects of Reflective and Nonreflective Planetary Wave Breaking on the NAO

Author:

Abatzoglou John T.1,Magnusdottir Gudrun1

Affiliation:

1. Department of Earth System Science, University of California, Irvine, Irvine, California

Abstract

Planetary wave breaking (PWB) over the subtropical North Atlantic is observed over 45 winters (December 1958–March 2003) using NCEP–NCAR reanalysis data. PWB is manifested in the rapid, large-scale and irreversible overturning of potential vorticity (PV) contours on isentropic surfaces in the subtropical upper troposphere. As breaking occurs over the subtropical North Atlantic, an upper-tropospheric PV tripole anomaly forms with nodes over the subtropical, midlatitude, and subpolar North Atlantic. The northern two nodes of this tripole are quite similar to the spatial structure of the North Atlantic Oscillation (NAO), with positive polarity. Nonlinear reflection is identified in approximately a quarter of all PWB events. Following breaking, two distinct circulation regimes arise, one in response to reflective events and the other in response to nonreflective events. For reflective events, anomalies over the North Atlantic rapidly propagate away from the breaking region along a poleward arching wave train over the Eurasian continent. The quasi-stationary wave activity flux indicates that wave activity is exported out of the Atlantic basin. At the same time, the regional poleward eddy momentum flux goes through a sign reversal, as does the polarity of the NAO. For nonreflective events, the dipole anomaly over the North Atlantic amplifies. Diagnostics for nonreflective events suggest that wave activity over the Azores gets absorbed, allowing continued enhancement of both the regional poleward eddy momentum flux and the positive NAO.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3