Wintertime Rossby Wave Breaking Persistence in Extended-Range Seasonal Forecasts of Atlantic Tropical Cyclone Activity

Author:

Jones Jhordanne J.1,Bell Michael M.1,Klotzbach Philip J.1,Barnes Elizabeth A.1

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract In this study, we examine the wintertime environmental precursors of summer anticyclonic wave breaking (AWB) over the North Atlantic region and assess the applicability of these precursors in predicting AWB impacts on seasonal tropical cyclone (TC) activity. We show that predictors representing the environmental impacts of subtropical AWB on seasonal TC activity improve the skill of extended-range seasonal forecasts of TC activity. There is a significant correlation between boreal winter and boreal summer AWB activity via AWB-forced phases of the quasi-stationary North Atlantic Oscillation (NAO). Years with above-normal boreal summer AWB activity over the North Atlantic region also show above-normal AWB activity in the preceding boreal winter that tends to force a positive phase of the NAO that persists through the spring. These conditions are sustained by continued AWB throughout the year, particularly when El Niño–Southern Oscillation plays less of a role at forcing the large-scale circulation. While individual AWB events are synoptic and nonlinear with little predictability beyond 8–10 days, the strong dynamical connection between winter and summer wave breaking lends enough persistence to AWB activity to enable predictability of its potential impacts on TC activity. We find that the winter–summer relationship improves the skill of extended-range seasonal forecasts from as early as an April lead time, particularly for years when wave breaking has played a crucial role in suppressing TC development.

Funder

Office of Naval Research

G. Unger Vetlesen Foundation

Fulbright Association

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3