A Study of Subseasonal Predictability

Author:

Newman Matthew1,Sardeshmukh Prashant D.1,Winkler Christopher R.1,Whitaker Jeffrey S.1

Affiliation:

1. NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Abstract

Abstract The predictability of weekly averaged circulation anomalies in the Northern Hemisphere, and diabatic heating anomalies in the Tropics, is investigated in a linear inverse model (LIM) derived from their observed simultaneous and time-lag correlation statistics. In both winter and summer, the model's forecast skill at week 2 (days 8–14) and week 3 (days 15–21) is comparable to that of a comprehensive global medium-range forecast (MRF) model developed at the National Centers for Environmental Prediction (NCEP). Its skill at week 3 is actually higher on average, partly due to its better ability to forecast tropical heating variations and their influence on the extratropical circulation. The geographical and temporal variations of forecast skill are also similar in the two models. This makes the much simpler LIM an attractive tool for assessing and diagnosing atmospheric predictability at these forecast ranges. The LIM assumes that the dynamics of weekly averages are linear, asymptotically stable, and stochastically forced. In a forecasting context, the predictable signal is associated with the deterministic linear dynamics, and the forecast error with the unpredictable stochastic noise. In a low-order linear model of a high-order chaotic system, this stochastic noise represents the effects of both chaotic nonlinear interactions and unresolved initial components on the evolution of the resolved components. Its statistics are assumed here to be state independent. An average signal-to-noise ratio is estimated at each grid point on the hemisphere and is then used to estimate the potential predictability of weekly variations at the point. In general, this predictability is about 50% higher in winter than summer over the Pacific and North America sectors; the situation is reversed over Eurasia and North Africa. Skill in predicting tropical heating variations is important for realizing this potential skill. The actual LIM forecast skill has a similar geographical structure but weaker magnitude than the potential skill. In this framework, the predictable variations of forecast skill from case to case are associated with predictable variations of signal rather than of noise. This contrasts with the traditional emphasis in studies of shorter-term predictability on flow-dependent instabilities, that is, on the predictable variations of noise. In the LIM, the predictable variations of signal are associated with variations of the initial state projection on the growing singular vectors of the LIM's propagator, which have relatively large amplitude in the Tropics. At times of strong projection on such structures, the signal-to-noise ratio is relatively high, and the Northern Hemispheric circulation is not only potentially but also actually more predictable than at other times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3