Improving subseasonal forecast of precipitation in Europe by combining a stochastic weather generator with dynamical models

Author:

Krouma Meriem12ORCID,Specq Damien3,Magnusson Linus4ORCID,Ardilouze Constantin3ORCID,Batté Lauriane35ORCID,Yiou Pascal1

Affiliation:

1. Laboratoire des Sciences du Climat et de l'Environnement UMR 8212 CEA‐CNRS‐UVSQ, IPSL & Université Paris‐Saclay Gif‐sur‐Yvette France

2. ARIA Technologies Nanterre France

3. CNRM Université de Toulouse, Météo‐France, CNRS Toulouse France

4. European Centre for Medium‐Range Weather Forecast Reading UK

5. Direction de la Climatologie et des Services Climatiques Météo‐France Toulouse France

Abstract

AbstractWe propose a forecasting tool for precipitation based on analogues of circulation defined from 5‐day hindcasts and a stochastic weather generator that we call “HC–SWG.” In this study, we aim to improve the forecast of European precipitation for subseasonal lead times (from 2 to 4 weeks) using the HC–SWG. We designed the HC–SWG to generate an ensemble precipitation forecast from the European Centre of Medium‐range Weather Forecasts (ECMWF) and Centre National de la Recherche Météorologique (CNRM) subseasonal‐to‐seasonal ensemble reforecasts. We define analogues from 5‐day ensemble reforecast of Z500 from the ECMWF (11 members) and CNRM (10 members) models. Then, we generate a 100‐member ensemble for precipitation over Europe. We evaluate the skill of the ensemble forecast using probabilistic skill scores such as the continuous ranked probability skill score (CRPSS) and receiver operating characteristic curve. We obtain reasonable forecast skill scores within 35 days for different locations in Europe. The CRPSS shows positive improvement with respect to climatology and persistence at the station level. The HC–SWG shows a capacity to distinguish between events and non‐events of precipitation within 15 days at the different stations. We compare the HC–SWG forecast with other precipitation forecasts to further confirm the benefits of our method. We found that the HC–SWG shows improvement against the ECMWF precipitation forecast until 25 days.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3