Forecasting seasonal to sub-seasonal rainfall in Great Britain using convolutional-neural networks

Author:

Barnes Andrew PaulORCID,McCullen Nick,Kjeldsen Thomas Rodding

Abstract

AbstractTraditional weather forecasting approaches use various numerical simulations and empirical models to produce a gridded estimate of rainfall, often spanning multiple regions but struggling to capture extreme events. The approach presented here combines modern meteorological forecasts from the ECMWF SEAS5 seasonal forecasts with convolutional neural networks (CNNs) to improve the forecasting of total monthly regional rainfall across Great Britain. The CNN is trained using mean sea-level pressure and 2-m air temperature forecasts from the ECMWF C3S service using three lead-times: 1 month, 3 months and 6 months. The training is supervised using the equivalent benchmark rainfall data provided by the CEH-GEAR (Centre for Ecology and Hydrology, gridded estimates of areal rainfall). Comparing the CNN to the ECMWF predictions shows the CNN out-performs the ECMWF across all three lead times. This is done using an unseen validation dataset and based on the root mean square error (RMSE) between the predicted rainfall values for each region and benchmark values from the CEH-GEAR dataset. The largest improvement is at a 1-month lead time where the CNN model scores a RMSE 6.89 mm lower than the ECMWF. However, these differences are exacerbated at the extremes with the CNN producing, at a 1-month lead time, RMSEs which are 28.19 mm lower than the corresponding predictions from the ECMWF. Following this, a sensitivity analysis shows the CNN model predicts increased rainfall values in the presence of a low sea-level pressure anomaly around Iceland, followed by a high sea-level pressure anomaly south of Greenland.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3