Affiliation:
1. Department of Physical Geography, Utrecht University, Utrecht, Netherlands
2. Climate System Research Group, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
Abstract
Abstract
Frequently used gridded meteorological datasets poorly represent precipitation in the Himalayas because of their relatively low spatial resolution and the associated representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields. However, most physical parameterization schemes are designed for a spatial resolution coarser than 1 km. In this study the Weather Research and Forecasting (WRF) Model is used to determine which resolution is required to most accurately simulate monsoon and winter precipitation, 2-m temperature, and wind fields in the Nepalese Himalayas. Four model nests are set up with spatial resolutions of 25, 5, 1, and 0.5 km, respectively, and a typical 10-day period in summer and winter in 2014 are simulated. The model output is compared with observational data obtained from automatic weather stations, pluviometers, and tipping buckets in the Langtang catchment. Results show that, despite issues with the quality of the observational data due to undercatch of snowfall, the highest resolution of 500 m does provide the best match with the observations and gives the most plausible spatial distribution of precipitation. The quality of the wind and temperature fields is also improved, whereby the cold temperature bias is decreased. Our results further elucidate the performance of WRF at high resolution and demonstrate the importance of accurate surface boundary conditions and spinup time for simulating precipitation. Furthermore, they suggest that future modeling studies of High Mountain Asia should consider a subkilometer grid for accurately estimating local meteorological variability.
Funder
European Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Deutsche Forschungsgemeinschaft
Publisher
American Meteorological Society
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献