Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics

Author:

Cecil Daniel J.1,Goodman Steven J.2,Boccippio Dennis J.2,Zipser Edward J.3,Nesbitt Stephen W.4

Affiliation:

1. University of Alabama in Huntsville, Huntsville, Alabama

2. NASA Marshall Space Flight Center, Huntsville, Alabama

3. University of Utah, Salt Lake City, Utah

4. Colorado State University, Fort Collins, Colorado

Abstract

Abstract During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of “weakest/smallest” features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min−1. The greatest observed flash rate is 1351 fl min−1; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km2, and the greatest rainfall from an individual precipitation feature exceeds 2 × 1012 kg h−1 of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land–ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

1. Microwave simulations of a tropical rainfall system with a three-dimensional cloud model.;Adler;J. Appl. Meteor.,1991

2. Regional differences in tropical lightning distributions.;Boccippio;J. Appl. Meteor.,2000

3. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability.;Boccippio;J. Atmos. Oceanic Technol.,2002

4. The distribution of thunderstorms over the globe.;Brooks;Geophys. Mem. London,1925

5. Echo size and asymmetry: Impact on NEXRAD storm identification.;Buechler;J. Appl. Meteor.,1990

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3