Microwave Simulations of a Tropical Rainfall System with a Three-Dimensional Cloud Model

Author:

Adler Robert F.1,Yeh Hwa-Young M.2,Prasad N.3,Tao Wei-Kuo1,Simpson Joanne1

Affiliation:

1. NASA/Goddard Space Flight Center, Greenbelt, Maryland

2. Caelum Research Corporation, Silver Spring, Maryland

3. General Sciences Corporation, Laurel, Maryland

Abstract

Abstract A three-dimensional cloud model-microwave radiative transfer model combination is used to study the relations among the precipitation and other microphysical characteristics of a tropical oceanic squall line and the upwelling radiance at pertinent microwave frequencies. Complex brightness temperature-rain rate relations are evident at the full horizontal resolution (1.5 km) of the models, with spatial avenging producing smoother, shifted relations, in most cases. Nonprecipitating cloud water is shown to be important in understanding the resulting distribution of brightness temperature. At the mature stage, convective portions of the cloud system are shown to produce different brightness temperature relations than the stratiform portion, primarily related to the distribution of cloud water. The evolution of the convective system from a small convective complex through its mature stage and the beginning of its dissipation also is shown to result in a variation of brightness temperature-rain relations, related to the distribution of cloud water and the evolution of ice in the precipitating system. The results of the study paint to the need to take into account the evolution of nonprecipitating cloud water and precipitation-sized ice in the retrieval of rain team from microwave space observations. This effect is evident for both the life cycle of individual convective elements and the life cycle of the convective system as a whole.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3