Reduced-Rank Sigma-Point Kalman Filter and Its Application in ENSO Model

Author:

Manoj K. K.1,Tang Youmin2,Deng Ziwang3,Chen Dake4,Cheng Yanjie5

Affiliation:

1. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada

2. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada, and State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China

3. Environmental Science and Engineering, University of Northern British Columbia, Prince George, British Columbia, and Department of Statistics, York University, Toronto, Ontario, Canada

4. State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, China

5. National Climate Center, China Meteorological Administration, Beijing, China

Abstract

Abstract The huge computational expense has been a main challenge while applying the sigma-point unscented Kalman filter (SPUKF) to a high-dimensional system. This study focuses on this issue and presents two methods to construct a reduced-rank sigma-point unscented Kalman filter (RRSPUKF). Both techniques employ the truncated singular value decomposition (TSVD) to factorize the covariance matrix and reduce its rank through truncation. The reduced-rank square root matrix is used to select the most important sigma points that can retain the main statistical features of the original sigma points. In the first technique, TSVD is applied on the covariance matrix constructed in the data space [RRSPUKF(D)], whereas in the second technique TSVD is applied on the covariance matrix constructed in the ensemble space [RRSPUKF(E)]. The two methods are applied to a realistic El Niño–Southern Oscillation (ENSO) prediction model [Lamont-Doherty Earth Observatory model, version 5 (LDEO5)] to assimilate the sea surface temperature (SST) anomalies. The results show that both the methods are more computationally efficient than the full-rank SPUKF, in spite of losing some estimation accuracy. When the truncation reaches a trade-off between cost expense and estimation accuracy, both methods are able to analyze the phase and intensity of all major ENSO events from 1971 to 2001 with comparable estimation accuracy. Furthermore, the RRSPUKF is compared against ensemble square root filter (EnSRF), showing that the overall analysis skill of RRSPUKF and EnSRF are comparable to each other, but the former is more robust than the latter.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3