Investigation of Tipping-Bucket Rain Gauges Using Digital Photographic Technology

Author:

Liao Minhan1,Liu Jiufu2,Liao Aimin2,Cai Zhao2,Huang Yixin3,Zhuo Peng2,Li Xuegang2

Affiliation:

1. Nanjing Hydraulic Research Institute, and College of Hydrology and Water Resource, Hohai University, Nanjing, China

2. Nanjing Hydraulic Research Institute, Nanjing, China

3. College of Hydrology and Water Resource, Hohai University, Nanjing, China

Abstract

AbstractWhen studying the tipping-bucket rain gauge (TBR), it is rather difficult to make an objective and sophisticated measurement of the duration of bucket rotation. From the perspective of digital photographic technology, however, the problem can be easily solved. The primary interest of this research has been to use digital photographic technology to study the TBR under laboratory conditions. In this study, the interframe difference algorithm and a camera recording device were used. Based on three types of JDZ TBRs, the time variation characteristics of bucket rotation were obtained. The time from the beginning of a tip to the time that the bucket is horizontal T1 and the time for a complete tip T2 were analyzed in detail. The results showed that T1 and T2 were functions of rainfall intensity, and T1 and T2 decrease as the rain intensity increases significantly (P < 0.001). Moreover, excellent evidence shows that the averages of T1 and T2 were positively correlated with bucket mass. It took more time for the bucket to tip as the mass of the bucket increased. Furthermore, the error of each TBR was calculated by the new proposed error calculation formula, and the new method was compared with the traditional method. The results from the two methods were very close, which demonstrates the correctness and feasibility of the new formula. However, the traditional calibration cannot acquire the variation characteristics of the tipping time, but the proposed approach can achieve this.

Funder

The Key Special Project of the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3