Correcting Himawari-8 Advanced Himawari Imager Data for the Production of Vivid True-Color Imagery

Author:

Broomhall Mark A.1,Majewski Leon J.1,Villani Vincent O.1,Grant Ian F.1,Miller Steven D.2

Affiliation:

1. Bureau of Meteorology, Melbourne, Victoria, Australia

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

AbstractObservations of top-of-atmosphere radiances from the Advanced Himawari Imager (AHI) blue, green, and red spectral bands can be used to produce high-temporal-resolution, true-color imagery at 1-km spatial resolution over the Asia–Pacific region. To enhance interpretability and aesthetic appearance of these images, the top-of-atmosphere radiance data are processed to remove the Rayleigh-scattered atmospheric component, corrected for limb effects, blended with brightness temperature data from a thermal infrared window band at night, and the resultant imagery adjusted to optimize contrast. The contribution of Rayleigh scattering to the AHI observations is calculated by interpolating radiative transfer parameters from a preconstructed set of lookup tables, which are specifically created for the Himawari-8 AHI instrument. A surface reflectance value for each pixel is calculated after the Rayleigh contribution is removed. The spectrally dependent reflectance values produced from the lookup table differ from the exact calculation by up to 18% at the planetary limb, over 100% at the solar terminator, and by less than 0.5% at low to moderate solar and sensor zenith angles. The subsequent corrections applied for limb effects mitigate the areas with high interpolation error, which slightly reduces the spatial coverage, but provides Rayleigh-corrected surface reflectance products that have interpolation errors at or below 0.5%. Resolution sharpening increases the nominal pixel size from 1000 to 500 m while still producing sharp images. The resultant images are colorful, visually intuitive, high contrast, and of sufficient spatial and temporal resolution to provide a unique and complementary observational tool for use by weather forecasters and the general public alike.

Funder

NOAA GOES-R Program Office of the Naval Research Laboratory

Oceanographer of the Navy

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3