Determining the height of deep volcanic eruptions over the tropical western Pacific with Himawari-8

Author:

Lucas ChrisORCID

Abstract

Volcanic eruptions are significant aviation hazards due to the formation of airborne volcanic ash clouds. Further, deep eruptions that reach the upper troposphere and lower stratosphere may have significant weather and climate impacts. A key variable for both dispersion model forecasting for aviation hazards and understanding climate impacts is the volcanic plume height. This work presents a method to quickly and reliably estimate the maximum plume heights of volcanic eruptions that interact with the tropical tropopause layer in the tropical western Pacific region. The method uses infrared (11.2 μm) data from Himawari-8 to identify ‘stratospheric warm spots’ in optically thick portions of the eruption cloud top by searching for reversals in the local-brightness temperature gradient. The brightness temperature of these warm spots is converted to height using seasonal stratospheric reference temperature profiles derived from 20 years of radiosonde data from 17 stations spread throughout the western Pacific. An approach for estimating the height of cold ‘overshooting tops’ is also adopted. Based on the radiosonde data, estimates of the uncertainty in the plume height depend on the height and range within 0.5–5.0 km. A case study of the 19 December 2021 eruption of Hunga Tonga-Hunga Ha’apai demonstrates the technique. The heights are robustly determined with this simple technique and compare well with height estimates of eruptions in the literature that use more complex satellite techniques.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Reference61 articles.

1. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.;Nature Communications,2015

2. Australian Bureau of Meteorology (2021) ‘Bureau of Meteorology Satellite Observations (Collection).’ (NCI Australia)

3. A long-term overshooting convective cloud-top detection database over Australia derived from MTSAT Japanese advanced meteorological imager observations.;Journal of Applied Meteorology and Climatology,2018

4. Tropopause inversion layer: seasonal and latitudinal variations and representation in standard radiosonde data and global models.;Journal of Geophysical Research: Atmospheres,2008

5. An introduction to Himawari-8/9 — Japan’s new-generation geostationary meteorological satellites.;Journal of the Meteorological Society of Japan (Series II),2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3