Stochastic Spectral Method for Radar-Based Probabilistic Precipitation Nowcasting

Author:

Pulkkinen Seppo1,Chandrasekar V.1,Harri Ari-Matti2

Affiliation:

1. Colorado State University, Fort Collins, Colorado, and Finnish Meteorological Institute, Helsinki, Finland

2. Finnish Meteorological Institute, Helsinki, Finland

Abstract

AbstractNowcasts (short-term forecasts) of heavy rainfall causing flash floods are highly valuable in densely populated urban areas. In the Collaborative Adaptive Sensing of the Atmosphere (CASA) project, a high-resolution X-band radar network was deployed in the Dallas–Fort Worth (DFW) metroplex. The Dynamic and Adaptive Radar Tracking of Storms (DARTS) method was developed as a part of the CASA nowcasting system. In this method, the advection field is determined in the spectral domain using the discrete Fourier transform. DARTS was recently extended to include a filtering scheme for suppressing small-scale precipitation features that have low predictability. Building on the earlier work, Stochastic DARTS (S-DARTS), a probabilistic extension of DARTS, is developed and tested using the CASA DFW radar network. In this method, the nowcasts are stochastically perturbed in order to simulate uncertainties. Two novel features are introduced in S-DARTS. First, the scale filtering and perturbation based on an autoregressive model are done in the spectral domain in order to achieve high computational efficiency. Second, this methodology is extended to modeling the temporal evolution of the advection field. The performance and forecast skill of S-DARTS are evaluated with different precipitation intensity thresholds and ensemble sizes. It is shown that S-DARTS can produce reliable probabilistic nowcasts in the CASA DFW domain with 250-m spatial resolution up to 45 min for lower precipitation intensities (below 2 mm h−1). For higher intensities (above 5 mm h−1), adequate skill can be obtained up to 15 min.

Funder

Suomalainen Tiedeakatemia

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3