Affiliation:
1. Colorado State University, Fort Collins, Colorado
Abstract
AbstractThis study targeted improving Collaborative Adaptive Sensing of the Atmosphere’s (CASA) 6-h lead time predictive ability by blending the radar-based nowcast with the NWP model over the Dallas–Fort Worth (DFW) urban radar network. This study also depicts the recent updates in CASA’s real-time reflectivity nowcast system by assessing nine precipitation cases over the DFW urban region. CASA’s nowcast framework displayed better primer outcomes than the WRF Model forecast for the lead time of 1 h and 30 min. After that time, the predictive ability of the nowcast framework began decreasing compared to the WRF Model. To broaden CASA’s predictive system lead time to 6 h, the WRF Model forecasts were blended with Dynamic and Adaptive Radar Tracking of Storms (DARTS) nowcast. The HRRR model analysis was used as initial and boundary conditions in the WRF Model. The high-resolution dual-pol radar observations were assimilated into the WRF Model through the 3DVAR data assimilation technique. Three kinds of blending strategies were used and the results were compared: 1) hyperbolic tangent curve (HTW), 2) critical success index (CSIW), and 3) salient cross dissolve (Sal CD). The sensitivity studies were conducted to decide desirable parameters in the blending techniques. The outcomes proved that blending enhanced the prediction skills. Also, the overall performance of blending relies on the accuracy of the WRF forecast. Even though blending results are mixed, the HTW-based technique performed better than the other two techniques.
Funder
The US National Science Foundation
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献