CASA Prediction System over Dallas–Fort Worth Urban Network: Blending of Nowcasting and High-Resolution Numerical Weather Prediction Model

Author:

Radhakrishnan Chandrasekar1,Chandrasekar V.1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

AbstractThis study targeted improving Collaborative Adaptive Sensing of the Atmosphere’s (CASA) 6-h lead time predictive ability by blending the radar-based nowcast with the NWP model over the Dallas–Fort Worth (DFW) urban radar network. This study also depicts the recent updates in CASA’s real-time reflectivity nowcast system by assessing nine precipitation cases over the DFW urban region. CASA’s nowcast framework displayed better primer outcomes than the WRF Model forecast for the lead time of 1 h and 30 min. After that time, the predictive ability of the nowcast framework began decreasing compared to the WRF Model. To broaden CASA’s predictive system lead time to 6 h, the WRF Model forecasts were blended with Dynamic and Adaptive Radar Tracking of Storms (DARTS) nowcast. The HRRR model analysis was used as initial and boundary conditions in the WRF Model. The high-resolution dual-pol radar observations were assimilated into the WRF Model through the 3DVAR data assimilation technique. Three kinds of blending strategies were used and the results were compared: 1) hyperbolic tangent curve (HTW), 2) critical success index (CSIW), and 3) salient cross dissolve (Sal CD). The sensitivity studies were conducted to decide desirable parameters in the blending techniques. The outcomes proved that blending enhanced the prediction skills. Also, the overall performance of blending relies on the accuracy of the WRF forecast. Even though blending results are mixed, the HTW-based technique performed better than the other two techniques.

Funder

The US National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3