A Coupled Circulation–Wave Model for Numerical Simulation of Storm Tides and Waves

Author:

Marsooli Reza1,Orton Philip M.1,Mellor George2,Georgas Nickitas1,Blumberg Alan F.1

Affiliation:

1. Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

2. Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Abstract

AbstractThe Stevens Institute of Technology Estuarine and Coastal Ocean Model (sECOM) is coupled here with the Mellor–Donelan–Oey (MDO) wave model to simulate coastal flooding due to storm tides and waves. sECOM is the three-dimensional (3D) circulation model used in the New York Harbor Observing and Prediction System (NYHOPS). The MDO wave model is a computationally cost-effective spectral wave model suitable for coupling with 3D circulation models. The coupled sECOM–MDO model takes into account wave–current interactions through wave-enhanced water surface roughness and wind stress, wave–current bottom stress, and depth-dependent wave radiation stress. The model results are compared with existing laboratory measurements and the field data collected in New York–New Jersey (NY–NJ) harbor during Hurricane Sandy. Comparisons between the model results and laboratory measurements demonstrate the capabilities of the model to accurately simulate wave characteristics, wave-induced water elevation, and undertow current. The model results for Hurricane Sandy reveal the successful performance of sECOM–MDO in situations where high waves and storm tides coexist. The results indicate that the temporal maximum wave setup in NY–NJ harbor was 0.26 m. On the other hand, the contribution of wave setup to the peak storm tide was 0.13 m, a contribution of only 3.8%. It is found that the inclusion of wave radiation stress and wave-enhanced bottom friction in the circulation model can reduce the errors in the calculated storm tides. At the Battery (New York), for example, the root-mean-square error reduced from 0.17 to 0.12 m.

Funder

National Park Service

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference75 articles.

1. Three-dimensional hydrothermal model of Onondaga Lake, New York;Ahsan;J. Hydraul. Eng.,1999

2. The US Navy coupled ocean-wave prediction system;Allard;Oceanography,2014

3. Radiation stresses in short-crested waves;Battjes;J. Mar. Res.,1972

4. Energy Loss and Set-Up Due to Breaking of Random Waves

5. Estuarine and Coastal Modeling (2009)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3