Gap Filling of the Coastal Ocean Surface Currents from HFR Data: Application to the Mid-Atlantic Bight HFR Network

Author:

Fredj Erick1,Roarty Hugh2,Kohut Josh2,Smith Michael2,Glenn Scott2

Affiliation:

1. Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel, and Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

2. Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Abstract

AbstractHigh-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal and spatial scales of nearshore processes that impact event response activities and basic coastal ocean research. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are predominately due to environmental effects, like increased external noise or low signal due to ocean surface conditions. Many applications of these surface current data require that these gaps be filled, such as Lagrangian numerical models, to estimate material transport and dispersion. This study introduces a new penalized least squares regression method based on a three-dimensional discrete cosine transform method to reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and requires relatively low computer memory storage. This paper evaluates the method against two scenarios of common data gaps found in HFR networks currently deployed around the world. The validation is based on observed surface current maps along the mid-Atlantic coast of the United States with specific vectors removed to replicate these common gap scenarios. The evaluation shows that the new method is robust and particularly well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is shown that the real-time application of the method is suitable for filling data gaps in large oceanography datasets with high accuracy.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3