Affiliation:
1. IMT Atlantique, Lab-STICC, UBL, Brest, France
2. Ocean-Next, Grenoble, France
3. Université Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France
Abstract
AbstractBecause of the irregular sampling pattern of raw altimeter data, many oceanographic applications rely on information from sea surface height (SSH) products gridded on regular grids where gaps have been filled with interpolation. Today, the operational SSH products are created using the simple, but robust, optimal interpolation (OI) method. If well tuned, the OI becomes computationally cheap and provides accurate results at low resolution. However, OI is not adapted to produce high-resolution and high-frequency maps of SSH. To improve the interpolation of SSH satellite observations, a data-driven approach (i.e., constructing a dynamical forecast model from the data) was recently proposed: analog data assimilation (AnDA). AnDA adaptively chooses analog situations from a catalog of SSH scenes—originating from numerical simulations or a large database of observations—which allow the temporal propagation of physical features at different scales, while each observation is assimilated. In this article, we review the AnDA and OI algorithms and compare their skills in numerical experiments. The experiments are observing system simulation experiments (OSSE) on the Lorenz-63 system and on an SSH reconstruction problem in the Gulf of Mexico. The results show that AnDA, with no necessary tuning, produces comparable reconstructions as does OI with tuned parameters. Moreover, AnDA manages to reconstruct the signals at higher frequencies than OI. Finally, an important additional feature for any interpolation method is to be able to assess the quality of its reconstruction. This study shows that the standard deviation estimated by AnDA is flow dependent, hence more informative on the reconstruction quality, than the one estimated by OI.
Funder
Copernicus Marine Environment Monitoring Services
Agence Nationale de la Recherche
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献