Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameter from In Situ Measurements

Author:

Leroy D.1,Fontaine E.1,Schwarzenboeck A.1,Strapp J. W.2

Affiliation:

1. Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, Aubière, France

2. Met Analytics, Inc., Toronto, Ontario, Canada

Abstract

AbstractEngine and air data probe manufacturers, as well as aviation agencies, are interested in better characterization of high ice water content (HIWC) areas close to thunderstorms, since HIWC conditions are suspected to cause in-service engine power loss and air data events on commercial aircraft. In this context, a collaborative field campaign has been conducted by high-altitude ice crystals (HAIC) and HIWC projects in order to provide ice water content and median mass diameter (MMD) of ice crystals in the HIWC environment.The computation of MMD from in situ measurements relies mainly on the definition of the crystal dimension D and on the relationship, which is used to convert number into mass distributions. The first part of this study shows that MMD can significantly deviate when using different mass–size relationships from the literature. Sensitivity tests demonstrate that MMD is significantly impacted by the choice of β. However, the larger contributor to MMD differences seems to be the choice of the size definition D itself.Since MMDs are quite sensitive to β, this study suggests a generic method for deducing β solely from optical array probes (OAPs) image data for various size definitions. The method is based on simulations of 3D crystal objects projected onto a 2D plane, thereby relating crystal mass to 2D area (projection) and perimeter. The MMD values calculated for different size definitions are quite similar, at least much closer than MMDs derived from different m(D) relationships in the literature.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3